- a CSV file,
- an Excel XLSX file,
- an Excel XLS file,
- a Text file.
You can also click on the "Reopen" button and select previously loaded files.
This will bring up the Input Data window:
In this window you may select:
- Y and X variables,
- Weight data for individual data points in any column,
- "Add combinations of X variables" option to add combinations of input variables, for example:
x1*x2, x1*x3, x1*x4, x2*x3, x2*x4, x3*x4 ...,x(n-1)*xn
- the Use log-linear model to use natural log values for the dependent variable (Y) and keep your independent variables (X) in their original scale,
- significance level alpha,
- Multicollinearity detection option1
- the search method is as follows:
- fast search using power, exponential and logarithmic functions - to use a small number of functions to search the model (a list of functions can be found here)
- detail search using power, exponential and logarithmic functions - to use a large number of power, exponential and logarithmic functions (a list of functions can be found here),
- detail search using power, exponential, logarithmic and trigonometric functions - to use a large number of detail search using power, exponential, logarithmic and trigonometric functions (a list of functions can be found here),
- detail search using only power functions - to use only a power function collection (a list of functions can be found here),
- detail search using only power functions in the range from x^-3.5 to x^3.5 - to use only a power function collection in the range from x^-3.5 to x^3.5 (a list of functions can be found here),
- Overfitting detection option and test set size in percent.
then click OK.
1 Selecting this option is not recommended for processing an extremely large data set when using a low-performance computer.
Start fitting data
After opening the data set you can click on:
Select the "VIF cannot exceed" checkbox to only find VIF value models not exceeding the selected VIF value. The default VIF limit value is 10, as below:
You can increase or lower this limit.
Select the "Minimum value of a" value to only find models characterized by "a" regression coefficient values not less than the selected value. The default limit value is 1E-5, as below:
By repeatedly clicking on these buttons in any order you can improve, freely expand or reduce the model. It is strongly recommended using the "AutoFit" option after every expansion and reduction operation.
An example procedure is as follows:
- First click on the "Custom model" or “Expand” button to select an equation in the model.
- Next click on the "Random Search" button and wait while a few different models are found. If there seems no search progress, push the ESC button to finish.
- Select the best model and then click on the “Auto-fit” button to search the model in detail. You may repeat this several times.
- If any model equations are marked red then click on the "Auto Reduce" button to remove them. After repeating reduction, click on the "Auto-Fit" button to find the best model.
New models are added to the collection after following the above steps.
You can click on ANY previous model from this collection to improve, expand or reduce this model once again.
It is strongly recommended that the user clicks on the first model and then clicks fit again, because ndCurveMaster uses a heuristic techniques for curve fitting. This improves and enables the discovery of better models. But even when you repeat fitting each time:
- the way of finding the best models will be different,
- and the models may be different.
Therefore it would be advisable to try to fit models a few times from the first linear model. Consequently, new better models will be created and added to the model collection. And finally you may choose the best model.
Results
The results are in the following windows:
The model equation window
The collections consists of models, as well as the description of every model with coefficients, error and statistical parameters.
You can review every model from the collection.
You can copy a collection to the clipboard or save to a csv file by using the
and
buttons. You can copy only the selected model by the use of the
button.
All calculation results are available for each model from the collection of models window.
The "Statistics" window
The Statistics window will present statistical analysis for the model:
Insignificant predictors are marked red in the Statistics window and "attempt removal" can be seen.
The most significant predictor is blue in this window.
A locked predictor is shown in italics
If all equations in the model are significant, the "Auto Reduce" option is not available.
The last column in the regression analysis table presents variance inflation factor (VIF):
The VIF index is commonly used for detection of multicollinearity (more details can be found here).
The Data window
The Data option includes:
- Normal data view window
- Full data view window
The Graphs window
Fit-line curve:

Scatterplots:


Histogram:

Heuristic techniques
ndCurveMaster uses heuristic techniques for curve fitting and implements scientific algorithms. This improves the discovery of better models. But even when you use the same data set each time:
- the way of finding the best models will be different,
- and the models may be different.
Therefore it would be advisable to try to repeatedly fit models to the same data.
Overfitting Detection
Overfitting occurs when the statistical model has too many parameters in relation to the size of the sample from which it was constructed. This phenomenon is a problem found primarily in machine learning and will not usually apply in the case of regression models.
But ndCurveMaster offers advanced algorithms that allow the user to build complicated multivariable models to accurately describe empirical data. Overfitting may occur under these conditions.
In regression analysis with one independent variable this setting means you can easily detect overfitting in the graph:
But in statistical analysis of many variables it is not possible to detect overfitting in this way.
Therefore, an overfitting detection technique has been implemented in ndCurveMaster. The test set method is used to detect overfitting. ndCurveMaster may randomly choose part of the data and use it in a test set:
Next ndCurveMaster performs regression using the remaing data. And finally ndCurveMaster can detect overfitting by comparing test set and dataset RMS errors.
Here is an example multivariable regression model:
Y= a0 + a1*exp(x1) + a2*x2^-8 + a3*x3^5.6 + a4*x4^-1 + a5*x5^9 + a6*x6^4.1 + a7*exp(x6)^3 + a8*x5^16 + a9*(1/2)^(x4) + a10*x2^-6 + a11*x1^1.9 + a12*x3^5.2 + a13*x1^-11 + a14*(ln(x3))^8 + a15*exp(x5)^-1 + a16*x4^1.9 + a17*x6^16 + a18*x2^10 + a19*exp(x3)^5 + a20*(ln(x6))^2 + a21*x4^-4 + a22*exp(x5)^2 + a23*x4^4.2 + a24*x5^15 + a25*x6^15 + a26*x3^12
Standard statistical analysis referring to the data set not detecting overfitting:
But ndCurveMaster can also check test data and data set RMS errors:
The test set RMS error is 9.55 and the dataset RMS error only equals 0.138.
ndCurveMaster detects overfitting as the test set error is 68.775 times the dataset error.
The use of overfitting is clearly shown the graph below. The blue points represent the dataset and the yellow - the test set:
The results from the graph mean that the fit of the data set points looks perfect but the test set points do not.
Scaling Datasets
For best results, try scaling your data sets. Imagine a data set with x values ranging from -10 000 to 100 000 and a regression model where the term 2^x is involved. The calculation will overflow because 2^100000, and the regression will fail as a result. Therefore ndCurveMaster cannot use 2^x formula in this case.
If data set looks like this:
X = [-10 000, -5 000, 0, 500, 1000 ,10 000, 100 000]
metres, you can scale this data to the following data set:
X = [-10, -5, 0, 0.5, 1, 10, 100]
kilometres.
Detailed information about normalization can be found here: en.wikipedia.org/wiki/Normalization_(statistics)
List of functions
List of functions in the "fast search using power, exponential and logarithmic functions" search method
- f(x) = exp(x)^-2
- f(x) = exp(x)^-1.5
- f(x) = exp(x)^-1
- f(x) = exp(x)^-0.5
- f(x) = exp(x)^-0.1
- f(x) = exp(x)^2
- f(x) = exp(x)^1.5
- f(x) = exp(x)
- f(x) = exp(x)^0.5
- f(x) = exp(x)^0.1
- f(x) = (1/7)^(x)
- f(x) = (1/6)^(x)
- f(x) = (1/5)^(x)
- f(x) = (1/4)^(x)
- f(x) = (1/3)^(x)
- f(x) = (1/2)^(x)
- f(x) = x^2
- f(x) = x^3
- f(x) = x^4
- f(x) = x^5
- f(x) = x^6
- f(x) = x^(1/3)
- f(x) = x^(1/5)
- f(x) = sin(x)
- f(x) = sin^2(x)
- f(x) = cos(x)
- f(x) = cos^2(x)
- f(x) = sinh(x)
- f(x) = cosh(x)
- f(x) = tanh(x)
- f(x) = x^0.05
- f(x) = x^0.15
- f(x) = x^0.25
- f(x) = x^0.35
- f(x) = x^0.45
- f(x) = x^0.55
- f(x) = x^0.65
- f(x) = x^0.75
- f(x) = x^0.85
- f(x) = x^0.95
- f(x) = x^1.05
- f(x) = x^1.15
- f(x) = x^1.25
- f(x) = x^1.35
- f(x) = x^1.45
- f(x) = x^1.55
- f(x) = x^(1/2)
- f(x) = x^(1/4)
- f(x) = x^(1/6)
- f(x) = x^(1/8)
- f(x) = x^0.1
- f(x) = x^0.2
- f(x) = x^0.3
- f(x) = x^0.4
- f(x) = x^0.6
- f(x) = x^0.7
- f(x) = x^0.8
- f(x) = x^0.9
- f(x) = x^1.1
- f(x) = x^1.2
- f(x) = x^1.3
- f(x) = x^1.4
- f(x) = x^1.5
- f(x) = x^1.6
- f(x) = x^1.7
- f(x) = x^1.8
- f(x) = x^1.9
- f(x) = x^2.1
- f(x) = x^2.2
- f(x) = x^2.3
- f(x) = x^2.4
- f(x) = x^2.5
- f(x) = x^2.6
- f(x) = x^2.7
- f(x) = x^2.8
- f(x) = x^2.9
- f(x) = x^3.1
- f(x) = x^3.2
- f(x) = x^3.3
- f(x) = x^3.4
- f(x) = x^3.5
- f(x) = x^3.6
- f(x) = x^3.7
- f(x) = x^3.8
- f(x) = x^3.9
- f(x) = x^4.1
- f(x) = x^4.2
- f(x) = x^4.3
- f(x) = x^4.4
- f(x) = x^4.5
- f(x) = x^4.6
- f(x) = x^4.7
- f(x) = x^4.8
- f(x) = x^4.9
- f(x) = x^5.1
- f(x) = x^5.2
- f(x) = x^5.3
- f(x) = x^5.4
- f(x) = x^5.5
- f(x) = x^5.6
- f(x) = ln(x)
- f(x) = (ln(x))^2
- f(x) = (ln(x))^3
- f(x) = (ln(x))^4
- f(x) = (ln(x))^5
- f(x) = (ln(x))^6
- f(x) = (ln(x))^7
- f(x) = (ln(x))^8
- f(x) = x^(-1/2)
- f(x) = x^(-1/4)
- f(x) = x^(-1/6)
- f(x) = x^(-1/8)
- f(x) = x^(-1/10)
- f(x) = x^(-1/12)
- f(x) = x^-1
- f(x) = x^-2
- f(x) = x^-3
- f(x) = x^-4
- f(x) = x^-5
- f(x) = x^-6
- f(x) = x^-7
- f(x) = x^-8
- f(x) = x^-9
- f(x) = x^-10
- f(x) = x^-11
- f(x) = x^-0.2
- f(x) = x^-0.3
- f(x) = x^-0.4
- f(x) = x^-0.6
- f(x) = x^-0.7
- f(x) = x^-0.8
- f(x) = x^-0.9
- f(x) = x^-1.1
- f(x) = x^-1.2
- f(x) = x^-1.3
- f(x) = x^-1.4
- f(x) = x^-1.5
- f(x) = x^-1.6
- f(x) = x^-1.7
- f(x) = x^-1.8
- f(x) = x^-1.9
- f(x) = x^-2.5
- f(x) = x^-3.5
- f(x) = x^-4.5
- f(x) = x^-5.5
List of functions in the "detail search using power, exponential and logarithmic functions" search method
- f(x) = 2^x
- f(x) = exp(x)^-4
- f(x) = exp(x)^-3
- f(x) = exp(x)^-2
- f(x) = exp(x)^-1
- f(x) = exp(x)^5
- f(x) = exp(x)^4
- f(x) = exp(x)^3
- f(x) = exp(x)^2
- f(x) = exp(x)
- f(x) = (1/7)^(x)
- f(x) = (1/6)^(x)
- f(x) = (1/5)^(x)
- f(x) = (1/4)^(x)
- f(x) = (1/3)^(x)
- f(x) = (1/2)^(x)
- f(x) = x^2
- f(x) = x^3
- f(x) = x^4
- f(x) = x^5
- f(x) = x^6
- f(x) = x^7
- f(x) = x^8
- f(x) = x^9
- f(x) = x^10
- f(x) = x^11
- f(x) = x^12
- f(x) = x^13
- f(x) = x^14
- f(x) = x^15
- f(x) = x^16
- f(x) = x^(1/3)
- f(x) = x^(1/5)
- f(x) = x^(1/7)
- f(x) = sin(x)
- f(x) = sin^2(x)
- f(x) = cos(x)
- f(x) = cos^2(x)
- f(x) = sinh(x)
- f(x) = cosh(x)
- f(x) = tanh(x)
- f(x) = x^(1/2)
- f(x) = x^(1/4)
- f(x) = x^(1/6)
- f(x) = x^(1/8)
- f(x) = x^(1/12)
- f(x) = x^0.01
- f(x) = x^0.02
- f(x) = x^0.03
- f(x) = x^0.04
- f(x) = x^0.05
- f(x) = x^0.06
- f(x) = x^0.07
- f(x) = x^0.08
- f(x) = x^0.09
- f(x) = x^0.1
- f(x) = x^0.11
- f(x) = x^0.12
- f(x) = x^0.13
- f(x) = x^0.14
- f(x) = x^0.15
- f(x) = x^0.16
- f(x) = x^0.17
- f(x) = x^0.18
- f(x) = x^0.19
- f(x) = x^0.2
- f(x) = x^0.21
- f(x) = x^0.22
- f(x) = x^0.23
- f(x) = x^0.24
- f(x) = x^0.26
- f(x) = x^0.27
- f(x) = x^0.28
- f(x) = x^0.29
- f(x) = x^0.3
- f(x) = x^0.31
- f(x) = x^0.32
- f(x) = x^0.33
- f(x) = x^0.34
- f(x) = x^0.35
- f(x) = x^0.36
- f(x) = x^0.37
- f(x) = x^0.38
- f(x) = x^0.39
- f(x) = x^0.4
- f(x) = x^0.41
- f(x) = x^0.42
- f(x) = x^0.43
- f(x) = x^0.44
- f(x) = x^0.45
- f(x) = x^0.46
- f(x) = x^0.47
- f(x) = x^0.48
- f(x) = x^0.49
- f(x) = x^0.51
- f(x) = x^0.52
- f(x) = x^0.53
- f(x) = x^0.54
- f(x) = x^0.55
- f(x) = x^0.56
- f(x) = x^0.57
- f(x) = x^0.58
- f(x) = x^0.59
- f(x) = x^0.6
- f(x) = x^0.61
- f(x) = x^0.62
- f(x) = x^0.63
- f(x) = x^0.64
- f(x) = x^0.65
- f(x) = x^0.66
- f(x) = x^0.67
- f(x) = x^0.68
- f(x) = x^0.69
- f(x) = x^0.7
- f(x) = x^0.71
- f(x) = x^0.72
- f(x) = x^0.73
- f(x) = x^0.74
- f(x) = x^0.75
- f(x) = x^0.76
- f(x) = x^0.77
- f(x) = x^0.78
- f(x) = x^0.79
- f(x) = x^0.8
- f(x) = x^0.81
- f(x) = x^0.82
- f(x) = x^0.83
- f(x) = x^0.84
- f(x) = x^0.85
- f(x) = x^0.86
- f(x) = x^0.87
- f(x) = x^0.88
- f(x) = x^0.89
- f(x) = x^0.9
- f(x) = x^0.91
- f(x) = x^0.92
- f(x) = x^0.93
- f(x) = x^0.94
- f(x) = x^0.95
- f(x) = x^0.96
- f(x) = x^0.97
- f(x) = x^0.98
- f(x) = x^0.99
- f(x) = x^1.05
- f(x) = x^1.1
- f(x) = x^1.15
- f(x) = x^1.2
- f(x) = x^1.25
- f(x) = x^1.3
- f(x) = x^1.35
- f(x) = x^1.4
- f(x) = x^1.45
- f(x) = x^1.5
- f(x) = x^1.55
- f(x) = x^1.6
- f(x) = x^1.65
- f(x) = x^1.7
- f(x) = x^1.75
- f(x) = x^1.8
- f(x) = x^1.85
- f(x) = x^1.9
- f(x) = x^1.95
- f(x) = x^2
- f(x) = x^2.05
- f(x) = x^2.1
- f(x) = x^2.15
- f(x) = x^2.2
- f(x) = x^2.25
- f(x) = x^2.3
- f(x) = x^2.35
- f(x) = x^2.4
- f(x) = x^2.45
- f(x) = x^2.5
- f(x) = x^2.55
- f(x) = x^2.6
- f(x) = x^2.65
- f(x) = x^2.7
- f(x) = x^2.75
- f(x) = x^2.8
- f(x) = x^2.85
- f(x) = x^2.9
- f(x) = x^2.95
- f(x) = x^3
- f(x) = x^3.05
- f(x) = x^3.1
- f(x) = x^3.15
- f(x) = x^3.2
- f(x) = x^3.25
- f(x) = x^3.3
- f(x) = x^3.35
- f(x) = x^3.4
- f(x) = x^3.45
- f(x) = x^3.5
- f(x) = x^3.55
- f(x) = x^3.6
- f(x) = x^3.65
- f(x) = x^3.7
- f(x) = x^3.75
- f(x) = x^3.8
- f(x) = x^3.85
- f(x) = x^3.9
- f(x) = x^3.95
- f(x) = x^4
- f(x) = x^4.05
- f(x) = x^4.1
- f(x) = x^4.15
- f(x) = x^4.2
- f(x) = x^4.25
- f(x) = x^4.3
- f(x) = x^4.35
- f(x) = x^4.4
- f(x) = x^4.45
- f(x) = x^4.5
- f(x) = x^4.55
- f(x) = x^4.6
- f(x) = x^4.65
- f(x) = x^4.7
- f(x) = x^4.75
- f(x) = x^4.8
- f(x) = x^4.85
- f(x) = x^4.9
- f(x) = x^4.95
- f(x) = x^5
- f(x) = x^5.05
- f(x) = x^5.1
- f(x) = x^5.15
- f(x) = x^5.2
- f(x) = x^5.25
- f(x) = x^5.3
- f(x) = x^5.35
- f(x) = x^5.4
- f(x) = x^5.45
- f(x) = x^5.5
- f(x) = x^5.55
- f(x) = x^5.6
- f(x) = x^5.65
- f(x) = x^5.7
- f(x) = x^5.75
- f(x) = x^5.8
- f(x) = x^5.85
- f(x) = x^5.9
- f(x) = x^5.95
- f(x) = ln(x)
- f(x) = (ln(x))^2
- f(x) = (ln(x))^3
- f(x) = (ln(x))^4
- f(x) = (ln(x))^5
- f(x) = (ln(x))^6
- f(x) = (ln(x))^7
- f(x) = (ln(x))^8
- f(x) = x^(-1/2)
- f(x) = x^(-1/4)
- f(x) = x^(-1/6)
- f(x) = x^(-1/8)
- f(x) = x^(-1/12)
- f(x) = x^-1
- f(x) = x^-2
- f(x) = x^-3
- f(x) = x^-4
- f(x) = x^-5
- f(x) = x^-6
- f(x) = x^-7
- f(x) = x^-8
- f(x) = x^-9
- f(x) = x^-10
- f(x) = x^-11
- f(x) = x^-0.05
- f(x) = x^-0.1
- f(x) = x^-0.15
- f(x) = x^-0.2
- f(x) = x^-0.25
- f(x) = x^-0.3
- f(x) = x^-0.35
- f(x) = x^-0.4
- f(x) = x^-0.45
- f(x) = x^-0.55
- f(x) = x^-0.6
- f(x) = x^-0.65
- f(x) = x^-0.7
- f(x) = x^-0.75
- f(x) = x^-0.8
- f(x) = x^-0.85
- f(x) = x^-0.9
- f(x) = x^-0.95
- f(x) = x^-1.05
- f(x) = x^-1.1
- f(x) = x^-1.15
- f(x) = x^-1.2
- f(x) = x^-1.25
- f(x) = x^-1.3
- f(x) = x^-1.4
- f(x) = x^-1.45
- f(x) = x^-1.5
- f(x) = x^-1.55
- f(x) = x^-1.6
- f(x) = x^-1.65
- f(x) = x^-1.7
- f(x) = x^-1.75
- f(x) = x^-1.8
- f(x) = x^-1.85
- f(x) = x^-1.9
- f(x) = x^-1.95
- f(x) = x^-2.05
- f(x) = x^-2.1
- f(x) = x^-2.15
- f(x) = x^-2.2
- f(x) = x^-2.25
- f(x) = x^-2.3
- f(x) = x^-2.35
- f(x) = x^-2.4
- f(x) = x^-2.45
- f(x) = x^-2.5
- f(x) = x^-2.55
- f(x) = x^-2.6
- f(x) = x^-2.7
- f(x) = x^-2.75
- f(x) = x^-2.8
- f(x) = x^-2.85
- f(x) = x^-2.9
- f(x) = x^-2.95
- f(x) = x^-3.05
- f(x) = x^-3.1
- f(x) = x^-3.15
- f(x) = x^-3.2
- f(x) = x^-3.25
- f(x) = x^-3.3
- f(x) = x^-3.35
- f(x) = x^-3.4
- f(x) = x^-3.45
- f(x) = x^-3.5
- f(x) = x^-3.55
- f(x) = x^-3.6
- f(x) = x^-3.65
- f(x) = x^-3.7
- f(x) = x^-3.75
- f(x) = x^-3.8
- f(x) = x^-3.85
- f(x) = x^-3.9
- f(x) = x^-3.95
- f(x) = x^-4.05
- f(x) = x^-4.1
- f(x) = x^-4.15
- f(x) = x^-4.2
- f(x) = x^-4.25
- f(x) = x^-4.3
- f(x) = x^-4.35
- f(x) = x^-4.4
- f(x) = x^-4.45
- f(x) = x^-4.5
- f(x) = x^-4.55
- f(x) = x^-4.6
- f(x) = x^-4.65
- f(x) = x^-4.7
- f(x) = x^-4.75
- f(x) = x^-4.8
- f(x) = x^-4.85
- f(x) = x^-4.9
- f(x) = x^-4.95
- f(x) = x^-5.05
- f(x) = x^-5.1
- f(x) = x^-5.15
- f(x) = x^-5.2
- f(x) = x^-5.25
- f(x) = x^-5.3
- f(x) = x^-5.35
- f(x) = x^-5.4
- f(x) = x^-5.45
- f(x) = x^-5.5
- f(x) = x^-5.55
- f(x) = x^-5.6
- f(x) = x^-5.65
- f(x) = x^-5.7
- f(x) = x^-5.75
- f(x) = x^-5.8
- f(x) = x^-5.85
- f(x) = x^-5.9
- f(x) = x^-5.95
List of functions in the "detail search using power, exponential, logarithmic and trigonometric functions" search method
- f(x)=2^x
- f(x)=exp(x)^-4
- f(x)=exp(x)^-3
- f(x)=exp(x)^-2
- f(x)=exp(x)^-1
- f(x)=exp(x)^5
- f(x)=exp(x)^4
- f(x)=exp(x)^3
- f(x)=exp(x)^2
- f(x)=exp(x)
- f(x)=(1/7)^(x)
- f(x)=(1/6)^(x)
- f(x)=(1/5)^(x)
- f(x)=(1/4)^(x)
- f(x)=(1/3)^(x)
- f(x)=(1/2)^(x)
- f(x)=x
- f(x)=x^2
- f(x)=x^3
- f(x)=x^4
- f(x)=x^5
- f(x)=x^6
- f(x)=x^7
- f(x)=x^8
- f(x)=x^9
- f(x)=x^10
- f(x)=x^11
- f(x)=x^12
- f(x)=x^13
- f(x)=x^14
- f(x)=x^15
- f(x)=x^16
- f(x)=x^(1/3)
- f(x)=x^(1/5)
- f(x)=x^(1/7)
- f(x)=sin(x)
- f(x)=cos(x)
- f(x)=sinh(x)
- f(x)=cosh(x)
- f(x)=sin^2(x)
- f(x)=cos^2(x)
- f(x)=tanh(x)
- f(x)=x^(1/2)
- f(x)=x^(1/4)
- f(x)=x^(1/6)
- f(x)=x^(1/8)
- f(x)=x^(1/12)
- f(x)=x^0.01
- f(x)=x^0.02
- f(x)=x^0.03
- f(x)=x^0.04
- f(x)=x^0.05
- f(x)=x^0.06
- f(x)=x^0.07
- f(x)=x^0.08
- f(x)=x^0.09
- f(x)=x^0.1
- f(x)=x^0.11
- f(x)=x^0.12
- f(x)=x^0.13
- f(x)=x^0.14
- f(x)=x^0.15
- f(x)=x^0.16
- f(x)=x^0.17
- f(x)=x^0.18
- f(x)=x^0.19
- f(x)=x^0.2
- f(x)=x^0.21
- f(x)=x^0.22
- f(x)=x^0.23
- f(x)=x^0.24
- f(x)=x^0.26
- f(x)=x^0.27
- f(x)=x^0.28
- f(x)=x^0.29
- f(x)=x^0.3
- f(x)=x^0.31
- f(x)=x^0.32
- f(x)=x^0.33
- f(x)=x^0.34
- f(x)=x^0.35
- f(x)=x^0.36
- f(x)=x^0.37
- f(x)=x^0.38
- f(x)=x^0.39
- f(x)=x^0.4
- f(x)=x^0.41
- f(x)=x^0.42
- f(x)=x^0.43
- f(x)=x^0.44
- f(x)=x^0.45
- f(x)=x^0.46
- f(x)=x^0.47
- f(x)=x^0.48
- f(x)=x^0.49
- f(x)=x^0.51
- f(x)=x^0.52
- f(x)=x^0.53
- f(x)=x^0.54
- f(x)=x^0.55
- f(x)=x^0.56
- f(x)=x^0.57
- f(x)=x^0.58
- f(x)=x^0.59
- f(x)=x^0.6
- f(x)=x^0.61
- f(x)=x^0.62
- f(x)=x^0.63
- f(x)=x^0.64
- f(x)=x^0.65
- f(x)=x^0.66
- f(x)=x^0.67
- f(x)=x^0.68
- f(x)=x^0.69
- f(x)=x^0.7
- f(x)=x^0.71
- f(x)=x^0.72
- f(x)=x^0.73
- f(x)=x^0.74
- f(x)=x^0.75
- f(x)=x^0.76
- f(x)=x^0.77
- f(x)=x^0.78
- f(x)=x^0.79
- f(x)=x^0.8
- f(x)=x^0.81
- f(x)=x^0.82
- f(x)=x^0.83
- f(x)=x^0.84
- f(x)=x^0.85
- f(x)=x^0.86
- f(x)=x^0.87
- f(x)=x^0.88
- f(x)=x^0.89
- f(x)=x^0.9
- f(x)=x^0.91
- f(x)=x^0.92
- f(x)=x^0.93
- f(x)=x^0.94
- f(x)=x^0.95
- f(x)=x^0.96
- f(x)=x^0.97
- f(x)=x^0.98
- f(x)=x^0.99
- f(x)=x^1.05
- f(x)=x^1.1
- f(x)=x^1.15
- f(x)=x^1.2
- f(x)=x^1.25
- f(x)=x^1.3
- f(x)=x^1.35
- f(x)=x^1.4
- f(x)=x^1.45
- f(x)=x^1.5
- f(x)=x^1.55
- f(x)=x^1.6
- f(x)=x^1.65
- f(x)=x^1.7
- f(x)=x^1.75
- f(x)=x^1.8
- f(x)=x^1.85
- f(x)=x^1.9
- f(x)=x^1.95
- f(x)=x^2
- f(x)=x^2.05
- f(x)=x^2.1
- f(x)=x^2.15
- f(x)=x^2.2
- f(x)=x^2.25
- f(x)=x^2.3
- f(x)=x^2.35
- f(x)=x^2.4
- f(x)=x^2.45
- f(x)=x^2.5
- f(x)=x^2.55
- f(x)=x^2.6
- f(x)=x^2.65
- f(x)=x^2.7
- f(x)=x^2.75
- f(x)=x^2.8
- f(x)=x^2.85
- f(x)=x^2.9
- f(x)=x^2.95
- f(x)=x^3
- f(x)=x^3.05
- f(x)=x^3.1
- f(x)=x^3.15
- f(x)=x^3.2
- f(x)=x^3.25
- f(x)=x^3.3
- f(x)=x^3.35
- f(x)=x^3.4
- f(x)=x^3.45
- f(x)=x^3.5
- f(x)=x^3.55
- f(x)=x^3.6
- f(x)=x^3.65
- f(x)=x^3.7
- f(x)=x^3.75
- f(x)=x^3.8
- f(x)=x^3.85
- f(x)=x^3.9
- f(x)=x^3.95
- f(x)=x^4
- f(x)=x^4.05
- f(x)=x^4.1
- f(x)=x^4.15
- f(x)=x^4.2
- f(x)=x^4.25
- f(x)=x^4.3
- f(x)=x^4.35
- f(x)=x^4.4
- f(x)=x^4.45
- f(x)=x^4.5
- f(x)=x^4.55
- f(x)=x^4.6
- f(x)=x^4.65
- f(x)=x^4.7
- f(x)=x^4.75
- f(x)=x^4.8
- f(x)=x^4.85
- f(x)=x^4.9
- f(x)=x^4.95
- f(x)=x^5
- f(x)=x^5.05
- f(x)=x^5.1
- f(x)=x^5.15
- f(x)=x^5.2
- f(x)=x^5.25
- f(x)=x^5.3
- f(x)=x^5.35
- f(x)=x^5.4
- f(x)=x^5.45
- f(x)=x^5.5
- f(x)=x^5.55
- f(x)=x^5.6
- f(x)=x^5.65
- f(x)=x^5.7
- f(x)=x^5.75
- f(x)=x^5.8
- f(x)=x^5.85
- f(x)=x^5.9
- f(x)=x^5.95
- f(x)=ln(x)
- f(x)=(ln(x))^2
- f(x)=(ln(x))^3
- f(x)=(ln(x))^4
- f(x)=(ln(x))^5
- f(x)=(ln(x))^6
- f(x)=(ln(x))^7
- f(x)=(ln(x))^8
- f(x)=x^(-1/2)
- f(x)=x^(-1/4)
- f(x)=x^(-1/6)
- f(x)=x^(-1/8)
- f(x)=x^(-1/12)
- f(x)=x^-1
- f(x)=x^-2
- f(x)=x^-3
- f(x)=x^-4
- f(x)=x^-5
- f(x)=x^-6
- f(x)=x^-7
- f(x)=x^-8
- f(x)=x^-9
- f(x)=x^-10
- f(x)=x^-11
- f(x)=x^-0.05
- f(x)=x^-0.1
- f(x)=x^-0.15
- f(x)=x^-0.2
- f(x)=x^-0.25
- f(x)=x^-0.3
- f(x)=x^-0.35
- f(x)=x^-0.4
- f(x)=x^-0.45
- f(x)=x^-0.55
- f(x)=x^-0.6
- f(x)=x^-0.65
- f(x)=x^-0.7
- f(x)=x^-0.75
- f(x)=x^-0.8
- f(x)=x^-0.85
- f(x)=x^-0.9
- f(x)=x^-0.95
- f(x)=x^-1.05
- f(x)=x^-1.1
- f(x)=x^-1.15
- f(x)=x^-1.2
- f(x)=x^-1.25
- f(x)=x^-1.3
- f(x)=x^-1.4
- f(x)=x^-1.45
- f(x)=x^-1.5
- f(x)=x^-1.55
- f(x)=x^-1.6
- f(x)=x^-1.65
- f(x)=x^-1.7
- f(x)=x^-1.75
- f(x)=x^-1.8
- f(x)=x^-1.85
- f(x)=x^-1.9
- f(x)=x^-1.95
- f(x)=x^-2.05
- f(x)=x^-2.1
- f(x)=x^-2.15
- f(x)=x^-2.2
- f(x)=x^-2.25
- f(x)=x^-2.3
- f(x)=x^-2.35
- f(x)=x^-2.4
- f(x)=x^-2.45
- f(x)=x^-2.5
- f(x)=x^-2.55
- f(x)=x^-2.6
- f(x)=x^-2.7
- f(x)=x^-2.75
- f(x)=x^-2.8
- f(x)=x^-2.85
- f(x)=x^-2.9
- f(x)=x^-2.95
- f(x)=x^-3.05
- f(x)=x^-3.1
- f(x)=x^-3.15
- f(x)=x^-3.2
- f(x)=x^-3.25
- f(x)=x^-3.3
- f(x)=x^-3.35
- f(x)=x^-3.4
- f(x)=x^-3.45
- f(x)=x^-3.5
- f(x)=x^-3.55
- f(x)=x^-3.6
- f(x)=x^-3.65
- f(x)=x^-3.7
- f(x)=x^-3.75
- f(x)=x^-3.8
- f(x)=x^-3.85
- f(x)=x^-3.9
- f(x)=x^-3.95
- f(x)=x^-4.05
- f(x)=x^-4.1
- f(x)=x^-4.15
- f(x)=x^-4.2
- f(x)=x^-4.25
- f(x)=x^-4.3
- f(x)=x^-4.35
- f(x)=x^-4.4
- f(x)=x^-4.45
- f(x)=x^-4.5
- f(x)=x^-4.55
- f(x)=x^-4.6
- f(x)=x^-4.65
- f(x)=x^-4.7
- f(x)=x^-4.75
- f(x)=x^-4.8
- f(x)=x^-4.85
- f(x)=x^-4.9
- f(x)=x^-4.95
- f(x)=x^-5.05
- f(x)=x^-5.1
- f(x)=x^-5.15
- f(x)=x^-5.2
- f(x)=x^-5.25
- f(x)=x^-5.3
- f(x)=x^-5.35
- f(x)=x^-5.4
- f(x)=x^-5.45
- f(x)=x^-5.5
- f(x)=x^-5.55
- f(x)=x^-5.6
- f(x)=x^-5.65
- f(x)=x^-5.7
- f(x)=x^-5.75
- f(x)=x^-5.8
- f(x)=x^-5.85
- f(x)=x^-5.9
- f(x)=x^-5.95
List of functions in the "detail search using only power functions" search method
- f(x) = x^2
- f(x) = x^3
- f(x) = x^4
- f(x) = x^5
- f(x) = x^6
- f(x) = x^7
- f(x) = x^8
- f(x) = x^9
- f(x) = x^10
- f(x) = x^11
- f(x) = x^12
- f(x) = x^13
- f(x) = x^14
- f(x) = x^15
- f(x) = x^16
- f(x) = x^(1/3)
- f(x) = x^(1/5)
- f(x) = x^(1/7)
- f(x) = x^(1/9)
- f(x) = x^(1/11)
- f(x) = x^(1/13)
- f(x) = x^(1/15)
- f(x) = x^(1/17)
- f(x) = x^(1/19)
- f(x) = x^(1/21)
- f(x) = x^(1/2)
- f(x) = x^(1/4)
- f(x) = x^(1/6)
- f(x) = x^(1/8)
- f(x) = x^(1/12)
- f(x) = x^0.01
- f(x) = x^0.02
- f(x) = x^0.03
- f(x) = x^0.04
- f(x) = x^0.05
- f(x) = x^0.06
- f(x) = x^0.07
- f(x) = x^0.08
- f(x) = x^0.09
- f(x) = x^0.1
- f(x) = x^0.11
- f(x) = x^0.12
- f(x) = x^0.13
- f(x) = x^0.14
- f(x) = x^0.15
- f(x) = x^0.16
- f(x) = x^0.17
- f(x) = x^0.18
- f(x) = x^0.19
- f(x) = x^0.2
- f(x) = x^0.21
- f(x) = x^0.22
- f(x) = x^0.23
- f(x) = x^0.24
- f(x) = x^0.26
- f(x) = x^0.27
- f(x) = x^0.28
- f(x) = x^0.29
- f(x) = x^0.3
- f(x) = x^0.31
- f(x) = x^0.32
- f(x) = x^0.33
- f(x) = x^0.34
- f(x) = x^0.35
- f(x) = x^0.36
- f(x) = x^0.37
- f(x) = x^0.38
- f(x) = x^0.39
- f(x) = x^0.4
- f(x) = x^0.41
- f(x) = x^0.42
- f(x) = x^0.43
- f(x) = x^0.44
- f(x) = x^0.45
- f(x) = x^0.46
- f(x) = x^0.47
- f(x) = x^0.48
- f(x) = x^0.49
- f(x) = x^0.51
- f(x) = x^0.52
- f(x) = x^0.53
- f(x) = x^0.54
- f(x) = x^0.55
- f(x) = x^0.56
- f(x) = x^0.57
- f(x) = x^0.58
- f(x) = x^0.59
- f(x) = x^0.6
- f(x) = x^0.61
- f(x) = x^0.62
- f(x) = x^0.63
- f(x) = x^0.64
- f(x) = x^0.65
- f(x) = x^0.66
- f(x) = x^0.67
- f(x) = x^0.68
- f(x) = x^0.69
- f(x) = x^0.7
- f(x) = x^0.71
- f(x) = x^0.72
- f(x) = x^0.73
- f(x) = x^0.74
- f(x) = x^0.75
- f(x) = x^0.76
- f(x) = x^0.77
- f(x) = x^0.78
- f(x) = x^0.79
- f(x) = x^0.8
- f(x) = x^0.81
- f(x) = x^0.82
- f(x) = x^0.83
- f(x) = x^0.84
- f(x) = x^0.85
- f(x) = x^0.86
- f(x) = x^0.87
- f(x) = x^0.88
- f(x) = x^0.89
- f(x) = x^0.9
- f(x) = x^0.91
- f(x) = x^0.92
- f(x) = x^0.93
- f(x) = x^0.94
- f(x) = x^0.95
- f(x) = x^0.96
- f(x) = x^0.97
- f(x) = x^0.98
- f(x) = x^0.99
- f(x) = x^1.05
- f(x) = x^1.1
- f(x) = x^1.15
- f(x) = x^1.2
- f(x) = x^1.25
- f(x) = x^1.3
- f(x) = x^1.35
- f(x) = x^1.4
- f(x) = x^1.45
- f(x) = x^1.5
- f(x) = x^1.55
- f(x) = x^1.6
- f(x) = x^1.65
- f(x) = x^1.7
- f(x) = x^1.75
- f(x) = x^1.8
- f(x) = x^1.85
- f(x) = x^1.9
- f(x) = x^1.95
- f(x) = x^2
- f(x) = x^2.05
- f(x) = x^2.1
- f(x) = x^2.15
- f(x) = x^2.2
- f(x) = x^2.25
- f(x) = x^2.3
- f(x) = x^2.35
- f(x) = x^2.4
- f(x) = x^2.45
- f(x) = x^2.5
- f(x) = x^2.55
- f(x) = x^2.6
- f(x) = x^2.65
- f(x) = x^2.7
- f(x) = x^2.75
- f(x) = x^2.8
- f(x) = x^2.85
- f(x) = x^2.9
- f(x) = x^2.95
- f(x) = x^3
- f(x) = x^3.05
- f(x) = x^3.1
- f(x) = x^3.15
- f(x) = x^3.2
- f(x) = x^3.25
- f(x) = x^3.3
- f(x) = x^3.35
- f(x) = x^3.4
- f(x) = x^3.45
- f(x) = x^3.5
- f(x) = x^3.55
- f(x) = x^3.6
- f(x) = x^3.65
- f(x) = x^3.7
- f(x) = x^3.75
- f(x) = x^3.8
- f(x) = x^3.85
- f(x) = x^3.9
- f(x) = x^3.95
- f(x) = x^4
- f(x) = x^4.05
- f(x) = x^4.1
- f(x) = x^4.15
- f(x) = x^4.2
- f(x) = x^4.25
- f(x) = x^4.3
- f(x) = x^4.35
- f(x) = x^4.4
- f(x) = x^4.45
- f(x) = x^4.5
- f(x) = x^4.55
- f(x) = x^4.6
- f(x) = x^4.65
- f(x) = x^4.7
- f(x) = x^4.75
- f(x) = x^4.8
- f(x) = x^4.85
- f(x) = x^4.9
- f(x) = x^4.95
- f(x) = x^5
- f(x) = x^5.05
- f(x) = x^5.1
- f(x) = x^5.15
- f(x) = x^5.2
- f(x) = x^5.25
- f(x) = x^5.3
- f(x) = x^5.35
- f(x) = x^5.4
- f(x) = x^5.45
- f(x) = x^5.5
- f(x) = x^5.55
- f(x) = x^5.6
- f(x) = x^5.65
- f(x) = x^5.7
- f(x) = x^5.75
- f(x) = x^5.8
- f(x) = x^5.85
- f(x) = x^5.9
- f(x) = x^5.95
- f(x) = x^-12
- f(x) = x^-13
- f(x) = x^-14
- f(x) = x^-15
- f(x) = x^-16
- f(x) = x^-17
- f(x) = x^-18
- f(x) = x^-19
- f(x) = x^(-1/2)
- f(x) = x^(-1/4)
- f(x) = x^(-1/6)
- f(x) = x^(-1/8)
- f(x) = x^(-1/12)
- f(x) = x^-1
- f(x) = x^-2
- f(x) = x^-3
- f(x) = x^-4
- f(x) = x^-5
- f(x) = x^-6
- f(x) = x^-7
- f(x) = x^-8
- f(x) = x^-9
- f(x) = x^-10
- f(x) = x^-11
- f(x) = x^-0.05
- f(x) = x^-0.1
- f(x) = x^-0.15
- f(x) = x^-0.2
- f(x) = x^-0.25
- f(x) = x^-0.3
- f(x) = x^-0.35
- f(x) = x^-0.4
- f(x) = x^-0.45
- f(x) = x^-0.55
- f(x) = x^-0.6
- f(x) = x^-0.65
- f(x) = x^-0.7
- f(x) = x^-0.75
- f(x) = x^-0.8
- f(x) = x^-0.85
- f(x) = x^-0.9
- f(x) = x^-0.95
- f(x) = x^-1.05
- f(x) = x^-1.1
- f(x) = x^-1.15
- f(x) = x^-1.2
- f(x) = x^-1.25
- f(x) = x^-1.3
- f(x) = x^-1.4
- f(x) = x^-1.45
- f(x) = x^-1.5
- f(x) = x^-1.55
- f(x) = x^-1.6
- f(x) = x^-1.65
- f(x) = x^-1.7
- f(x) = x^-1.75
- f(x) = x^-1.8
- f(x) = x^-1.85
- f(x) = x^-1.9
- f(x) = x^-1.95
- f(x) = x^-2.05
- f(x) = x^-2.1
- f(x) = x^-2.15
- f(x) = x^-2.2
- f(x) = x^-2.25
- f(x) = x^-2.3
- f(x) = x^-2.35
- f(x) = x^-2.4
- f(x) = x^-2.45
- f(x) = x^-2.5
- f(x) = x^-2.55
- f(x) = x^-2.6
- f(x) = x^-2.7
- f(x) = x^-2.75
- f(x) = x^-2.8
- f(x) = x^-2.85
- f(x) = x^-2.9
- f(x) = x^-2.95
- f(x) = x^-3.05
- f(x) = x^-3.1
- f(x) = x^-3.15
- f(x) = x^-3.2
- f(x) = x^-3.25
- f(x) = x^-3.3
- f(x) = x^-3.35
- f(x) = x^-3.4
- f(x) = x^-3.45
- f(x) = x^-3.5
- f(x) = x^-3.55
- f(x) = x^-3.6
- f(x) = x^-3.65
- f(x) = x^-3.7
- f(x) = x^-3.75
- f(x) = x^-3.8
- f(x) = x^-3.85
- f(x) = x^-3.9
- f(x) = x^-3.95
- f(x) = x^-4.05
- f(x) = x^-4.1
- f(x) = x^-4.15
- f(x) = x^-4.2
- f(x) = x^-4.25
- f(x) = x^-4.3
- f(x) = x^-4.35
- f(x) = x^-4.4
- f(x) = x^-4.45
- f(x) = x^-4.5
- f(x) = x^-4.55
- f(x) = x^-4.6
- f(x) = x^-4.65
- f(x) = x^-4.7
- f(x) = x^-4.75
- f(x) = x^-4.8
- f(x) = x^-4.85
- f(x) = x^-4.9
- f(x) = x^-4.95
- f(x) = x^-5.05
- f(x) = x^-5.1
- f(x) = x^-5.15
- f(x) = x^-5.2
- f(x) = x^-5.25
- f(x) = x^-5.3
- f(x) = x^-5.35
- f(x) = x^-5.4
- f(x) = x^-5.45
- f(x) = x^-5.5
- f(x) = x^-5.55
- f(x) = x^-5.6
- f(x) = x^-5.65
- f(x) = x^-5.7
- f(x) = x^-5.75
- f(x) = x^-5.8
- f(x) = x^-5.85
- f(x) = x^-5.9
- f(x) = x^-5.95
- f(x) = x^20
- f(x) = x^25
- f(x) = x^30
- f(x) = x^35
- f(x) = x^40
- f(x) = x^45
- f(x) = x^50
- f(x) = x^55
- f(x) = x^60
- f(x) = x^65
- f(x) = x^70
- f(x) = x^75
- f(x) = x^80
- f(x) = x^85
- f(x) = x^90
- f(x) = x^95
List of functions in the "detail search using only power functions in the range from x^-3.5 to x^3.5" search method
- f(x)=x
- f(x)=x^2
- f(x)=x^3
- f(x)=x^(1/3)
- f(x)=x^(2/3)
- f(x)=x^(1/5)
- f(x)=x^(1/7)
- f(x)=x^(1/9)
- f(x)=x^(1/11)
- f(x)=x^(1/13)
- f(x)=x^(1/15)
- f(x)=x^(1/17)
- f(x)=x^(1/19)
- f(x)=x^(1/21)
- f(x)=x^(1/2)
- f(x)=x^(1/4)
- f(x)=x^(1/6)
- f(x)=x^(1/8)
- f(x)=x^(1/12)
- f(x)=x^0.01
- f(x)=x^0.02
- f(x)=x^0.03
- f(x)=x^0.04
- f(x)=x^0.05
- f(x)=x^0.06
- f(x)=x^0.07
- f(x)=x^0.08
- f(x)=x^0.09
- f(x)=x^0.1
- f(x)=x^0.11
- f(x)=x^0.12
- f(x)=x^0.13
- f(x)=x^0.14
- f(x)=x^0.15
- f(x)=x^0.16
- f(x)=x^0.17
- f(x)=x^0.18
- f(x)=x^0.19
- f(x)=x^0.2
- f(x)=x^0.21
- f(x)=x^0.22
- f(x)=x^0.23
- f(x)=x^0.24
- f(x)=x^0.26
- f(x)=x^0.27
- f(x)=x^0.28
- f(x)=x^0.29
- f(x)=x^0.3
- f(x)=x^0.31
- f(x)=x^0.32
- f(x)=x^0.33
- f(x)=x^0.34
- f(x)=x^0.35
- f(x)=x^0.36
- f(x)=x^0.37
- f(x)=x^0.38
- f(x)=x^0.39
- f(x)=x^0.4
- f(x)=x^0.41
- f(x)=x^0.42
- f(x)=x^0.43
- f(x)=x^0.44
- f(x)=x^0.45
- f(x)=x^0.46
- f(x)=x^0.47
- f(x)=x^0.48
- f(x)=x^0.49
- f(x)=x^0.51
- f(x)=x^0.52
- f(x)=x^0.53
- f(x)=x^0.54
- f(x)=x^0.55
- f(x)=x^0.56
- f(x)=x^0.57
- f(x)=x^0.58
- f(x)=x^0.59
- f(x)=x^0.6
- f(x)=x^0.61
- f(x)=x^0.62
- f(x)=x^0.63
- f(x)=x^0.64
- f(x)=x^0.65
- f(x)=x^0.66
- f(x)=x^0.67
- f(x)=x^0.68
- f(x)=x^0.69
- f(x)=x^0.7
- f(x)=x^0.71
- f(x)=x^0.72
- f(x)=x^0.73
- f(x)=x^0.74
- f(x)=x^0.75
- f(x)=x^0.76
- f(x)=x^0.77
- f(x)=x^0.78
- f(x)=x^0.79
- f(x)=x^0.8
- f(x)=x^0.81
- f(x)=x^0.82
- f(x)=x^0.83
- f(x)=x^0.84
- f(x)=x^0.85
- f(x)=x^0.86
- f(x)=x^0.87
- f(x)=x^0.88
- f(x)=x^0.89
- f(x)=x^0.9
- f(x)=x^0.91
- f(x)=x^0.92
- f(x)=x^0.93
- f(x)=x^0.94
- f(x)=x^0.95
- f(x)=x^0.96
- f(x)=x^0.97
- f(x)=x^0.98
- f(x)=x^0.99
- f(x)=x^1.05
- f(x)=x^1.1
- f(x)=x^1.15
- f(x)=x^1.2
- f(x)=x^1.25
- f(x)=x^1.3
- f(x)=x^1.35
- f(x)=x^1.4
- f(x)=x^1.45
- f(x)=x^1.5
- f(x)=x^1.55
- f(x)=x^1.6
- f(x)=x^1.65
- f(x)=x^1.7
- f(x)=x^1.75
- f(x)=x^1.8
- f(x)=x^1.85
- f(x)=x^1.9
- f(x)=x^1.95
- f(x)=x^2.05
- f(x)=x^2.1
- f(x)=x^2.15
- f(x)=x^2.2
- f(x)=x^2.25
- f(x)=x^2.3
- f(x)=x^2.35
- f(x)=x^2.4
- f(x)=x^2.45
- f(x)=x^2.5
- f(x)=x^2.55
- f(x)=x^2.6
- f(x)=x^2.65
- f(x)=x^2.7
- f(x)=x^2.75
- f(x)=x^2.8
- f(x)=x^2.85
- f(x)=x^2.9
- f(x)=x^2.95
- f(x)=x^3.05
- f(x)=x^3.1
- f(x)=x^3.15
- f(x)=x^3.2
- f(x)=x^3.25
- f(x)=x^3.3
- f(x)=x^3.35
- f(x)=x^3.4
- f(x)=x^3.45
- f(x)=x^3.5
- f(x)=x^(-1/2)
- f(x)=x^(-1/4)
- f(x)=x^(-1/6)
- f(x)=x^(-1/8)
- f(x)=x^(-1/12)
- f(x)=x^-1
- f(x)=x^-2
- f(x)=x^-3
- f(x)=x^-0.05
- f(x)=x^-0.1
- f(x)=x^-0.15
- f(x)=x^-0.2
- f(x)=x^-0.25
- f(x)=x^-0.3
- f(x)=x^-0.35
- f(x)=x^-0.4
- f(x)=x^-0.45
- f(x)=x^-0.55
- f(x)=x^-0.6
- f(x)=x^-0.65
- f(x)=x^-0.7
- f(x)=x^-0.75
- f(x)=x^-0.8
- f(x)=x^-0.85
- f(x)=x^-0.9
- f(x)=x^-0.95
- f(x)=x^-1.05
- f(x)=x^-1.1
- f(x)=x^-1.15
- f(x)=x^-1.2
- f(x)=x^-1.25
- f(x)=x^-1.3
- f(x)=x^-1.4
- f(x)=x^-1.45
- f(x)=x^-1.5
- f(x)=x^-1.55
- f(x)=x^-1.6
- f(x)=x^-1.65
- f(x)=x^-1.7
- f(x)=x^-1.75
- f(x)=x^-1.8
- f(x)=x^-1.85
- f(x)=x^-1.9
- f(x)=x^-1.95
- f(x)=x^-2.05
- f(x)=x^-2.1
- f(x)=x^-2.15
- f(x)=x^-2.2
- f(x)=x^-2.25
- f(x)=x^-2.3
- f(x)=x^-2.35
- f(x)=x^-2.4
- f(x)=x^-2.45
- f(x)=x^-2.5
- f(x)=x^-2.55
- f(x)=x^-2.6
- f(x)=x^-2.7
- f(x)=x^-2.75
- f(x)=x^-2.8
- f(x)=x^-2.85
- f(x)=x^-2.9
- f(x)=x^-2.95
- f(x)=x^-3.05
- f(x)=x^-3.1
- f(x)=x^-3.15
- f(x)=x^-3.2
- f(x)=x^-3.25
- f(x)=x^-3.3
- f(x)=x^-3.35
- f(x)=x^-3.4
- f(x)=x^-3.45
- f(x)=x^-3.5